Wet Needling Techniques in Patient Care: Clinical Effectiveness and Guidelines
Authors: Wendy Pejic, Kaitryn Campbell

Acknowledgments:

Disclaimer: The information in this document is intended to help Canadian health care decision-makers, health care professionals, health systems leaders, and policy-makers make well-informed decisions and thereby improve the quality of health care services. While patients and others may access this document, the document is made available for informational purposes only and no representations or warranties are made with respect to its fitness for any particular purpose. The information in this document should not be used as a substitute for professional medical advice or as a substitute for the application of clinical judgment in respect of the care of a particular patient or other professional judgment in any decision-making process. The Canadian Agency for Drugs and Technologies in Health (CADTH) does not endorse any information, drugs, therapies, treatments, products, processes, or services.

While care has been taken to ensure that the information prepared by CADTH in this document is accurate, complete, and up-to-date as at the applicable date the material was first published by CADTH, CADTH does not make any guarantees to that effect. CADTH does not guarantee and is not responsible for the quality, currency, propriety, accuracy, or reasonableness of any statements, information, or conclusions contained in any third-party materials used in preparing this document. The views and opinions of third parties published in this document do not necessarily state or reflect those of CADTH.

CADTH is not responsible for any errors, omissions, injury, loss, or damage arising from or relating to the use (or misuse) of any information, statements, or conclusions contained in or implied by the contents of this document or any of the source materials.

This document may contain links to third-party websites. CADTH does not have control over the content of such sites. Use of third-party sites is governed by the third-party website owners’ own terms and conditions set out for such sites. CADTH does not make any guarantee with respect to any information contained on such third-party sites and CADTH is not responsible for any injury, loss, or damage suffered as a result of using such third-party sites. CADTH has no responsibility for the collection, use, and disclosure of personal information by third-party sites.

Subject to the aforementioned limitations, the views expressed herein are those of CADTH and do not necessarily represent the views of Canada’s federal, provincial, or territorial governments or any third party supplier of information.

This document is prepared and intended for use in the context of the Canadian health care system. The use of this document outside of Canada is done so at the user’s own risk.

This disclaimer and any questions or matters of any nature arising from or relating to the content or use (or misuse) of this document will be governed by and interpreted in accordance with the laws of the Province of Ontario and the laws of Canada applicable therein, and all proceedings shall be subject to the exclusive jurisdiction of the courts of the Province of Ontario, Canada.

The copyright and other intellectual property rights in this document are owned by CADTH and its licensors. These rights are protected by the Canadian Copyright Act and other national and international laws and agreements. Users are permitted to make copies of this document for non-commercial purposes only, provided it is not modified when reproduced and appropriate credit is given to CADTH and its licensors.

About CADTH: CADTH is an independent, not-for-profit organization responsible for providing Canada’s health care decision-makers with objective evidence to help make informed decisions about the optimal use of drugs, medical devices, diagnostics, and procedures in our health care system.
Research Questions

1. What is the clinical effectiveness of wet needling techniques in patient care?

2. What are the evidence-based guidelines regarding wet needling techniques in patient care?

Key Findings

One systematic review, five randomized controlled trials, and three non-randomized studies were identified regarding the clinical effectiveness of wet needling techniques in patient care. No evidence-based guidelines were identified regarding wet needling techniques in patient care.

Methods

A limited literature search was conducted on key resources including PubMed, the Cochrane Library, University of York Centre for Reviews and Dissemination (CRD) databases, Canadian and major international health technology agencies, as well as a focused Internet search. Methodological filters were applied to limit retrieval to systematic reviews, randomized controlled trials, non-randomized controlled trials, and guidelines. Where possible, retrieval was limited to the human population. The search was also limited to English language documents published between January 1, 2013 and August 20, 2018. Internet links were provided, where available.

Selection Criteria

One reviewer screened citations and selected studies based on the inclusion criteria presented in Table 1.

<table>
<thead>
<tr>
<th>Table 1: Selection Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
</tr>
<tr>
<td>Intervention</td>
</tr>
</tbody>
</table>
| **Comparators** | Q1: Any comparator; No comparator
Q2: No comparator |
| **Outcomes** | Q1: Clinical effectiveness, benefits, harms, safety
Q2: Guidelines |
| **Study Designs** | Health technology assessments, systematic reviews, meta-analyses, randomized controlled trials, non-randomized studies, evidence-based guidelines |
Results

Rapid Response reports are organized so that the higher quality evidence is presented first. Therefore, health technology assessment reports, systematic reviews, and meta-analyses are presented first. These are followed by randomized controlled trials, non-randomized studies, and evidence-based guidelines.

One systematic review, five randomized controlled trials, and three non-randomized studies were identified regarding the clinical effectiveness of wet needling techniques in patient care. No relevant health technology assessments or evidence-based guidelines were identified.

Additional references of potential interest are provided in the appendix.

Overall Summary of Findings

One systematic review,\(^1\) five randomized controlled trials,\(^2,6,9\) and three non-randomized studies\(^7,8,9\) were identified regarding the clinical effectiveness of wet needling techniques in patient care.

The authors of seven studies\(^1,3,6-9\) (including one systematic review\(^1\)) noted that both saline and the active comparator trigger point injections\(^1,3,6-9\) were either effective at reducing pain or showed no difference with their active comparators in a variety of indications (including patellar and Achilles tendinopathy,\(^1\) pain in the upper trapezius muscle,\(^2\) masticatory myofascial pain syndrome, fibromyalgia, and headache,\(^3\) episodic\(^6\) tension-type headaches\(^9\) [although in patients with episodic tension-type headaches this was only observed after two months in the patients receiving multiple saline injections],\(^6\) chronic nonbacterial prostatitis/chronic pelvic pain,\(^7\) and in patients with myofascial pain in the iliocostalis thoracis-lumborum muscle\(^9\)). One RCT study abstract did not provide information specific to the efficacy of the saline injections\(^4\) while the authors of a different RCT did not observe any significant differences in pain reduction with saline injections in patients with diabetes aged less than 70 years with neuropathic pain in both feet.\(^5\) Detailed study characteristics are provided in Table 2.

No evidence-based guidelines were identified regarding wet needling techniques in patient care; therefore, no further summary can be provided.

<table>
<thead>
<tr>
<th>Table 2: Summary of Included Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Author, Year</td>
</tr>
<tr>
<td>-------------------------</td>
</tr>
<tr>
<td>Systematic Reviews and Meta-Analyses</td>
</tr>
<tr>
<td>Di Matteo, 2015(^1)</td>
</tr>
<tr>
<td>Randomized Controlled Studies</td>
</tr>
<tr>
<td>Kwanchuay, 2015(^2)</td>
</tr>
<tr>
<td>First Author, Year</td>
</tr>
<tr>
<td>--------------------</td>
</tr>
</tbody>
</table>
| Sabatke, 2015³ | included with MTrP at the upper trapezius muscle
• Patients advised to continue stretching and ergonomic adaptation alongside injections | injection) | • Efficacy (as measured by VAS and PPT)
• Safety | reduction between 0.9% NaCl and BTxA injections for the treatment of MTrP of the upper trapezius muscle
• No SAEs in either group |
| | 70 patients with masticatory MPS, fibromyalgia, and headache (having TP) | • Anesthetic injection
• Saline injection | • Headache frequency and intensity | • Injections in trigger points decreased fascial pain in patients with either injection type
• Decreases in headache frequency and intensity were also decreased in patients with either injection type |
| Xie, 2015⁴ | 120 patients with MPS of the trapezius muscle
• Whether treatment in the MTrPs or intramuscular IZ zone is more effective at relieving chronic neck pain | • Saline (0.9% NaCl) injections at the MTrPs (n=24; Group 1)
• Lidocaine (0.5%) injections at the MTrPs (n=24; Group 2)
• Saline (0.9% NaCl) injections at mid-upper trapezius (n=24; Group 3)
• Lidocaine (0.5%) injections at mid-upper trapezius (n=24; Group 4)
• Combination injection of 0.5% lidocaine at both mid-upper and trapezius | • Efficacy of lidocaine 0.5% injection in the intramuscular IZ for the treatment of chronic pain due to MTrPs in the trapezius muscle | • No information regarding the efficaciousness of saline injections was discussed in the abstract |
| Ghasemi, 2014⁵ | 40 patients with diabetes aged <70 years with neuropathic pain in both feet | • Intradermal BTxA injection (n=20)
• Saline injection (n=20) | • Efficacy (as measure by DN4 questionnaire, NPS, and VAS scores) | • After saline injections, no significant differences were observed in DN4, NPS, and VAS scores |
| Karadas, 2013⁶ | 108 patients with frequent ETTH and MTrPs in their pericranial muscles | • Saline (NaCl 0.9%) injection (n=27, Group 1)
• Lidocaine (0.5%) injection (n=27, Group 2)
• 5 saline (NaCl 0.9%) injections (n=27, Group 3)
• 5 lidocaine (0.5%) injections (n=27, Group 4) | At 2, 4, and 6 months post-treatment:
• Frequency of painful days/month
• VAS score | • Compared to pre-treatment, frequency of painful days/month scores significantly improved in Groups, 2, 3, and 4 at 2 months post-treatment |

Non-Randomized Studies

| Seong, 2017⁷ | Retrospective follow-up study of 63 patients with CP/CPPS | • HP (n=32) twice a week every third day for
• SP (n=31) twice a week every third day for 4 | • Effectiveness of HP versus SP (measured) | • Pharmacopuncture and electroacupuncture (regardless of using HP and SP) were effective |
<table>
<thead>
<tr>
<th>First Author, Year</th>
<th>Study Characteristics</th>
<th>Intervention</th>
<th>Comparator(s)</th>
<th>Outcomes</th>
<th>Author’s Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roldan, 2016<sup>a</sup></td>
<td>• Observational assessment of convenience sample of 43 patients who presented to the ED with clinical evidence of myofascial pain in the ITL muscle</td>
<td>• Injection of the TP with particulate steroids with a local</td>
<td>• Saline injection of TP</td>
<td>• Pain control (primary outcome)</td>
<td>• All patients (regardless of injection type) still had satisfactory pain control 2 weeks post-injection</td>
</tr>
<tr>
<td>Karadas, 2013<sup>b</sup></td>
<td>• Prospective study</td>
<td>• Lidocaine injection (n=24)</td>
<td>• Placebo (saline injection; n=24)</td>
<td>• Painful days (as measured by VAS score)</td>
<td>• Number of painful days in a month decreased after treatment in both groups</td>
</tr>
<tr>
<td></td>
<td>• Injection presented in these patients ranged from 2 days to 7 years</td>
<td></td>
<td></td>
<td>• Anxiety and depression<sup>b</sup></td>
<td>• Lidocaine group’s response was better than that of the saline group (p<0.001)</td>
</tr>
</tbody>
</table>

^a“…., on alternate days 2 mL for each muscle was injected into the frontal, temporal, masseter, sternocleidomastoid, semispinalis capitis, trapezius and splenius capitis muscles bilaterally.”

^bWill not be focusing on this outcome in this report.

References Summarized

Health Technology Assessments

No literature identified.

Systematic Reviews and Meta-analyses

 PubMed: PM25323041
Randomized Controlled Trials

Non-Randomized Studies

Guidelines and Recommendations

No literature identified.
Appendix — Further Information

Previous CADTH Reports

 PubMed: PM27831670

Systematic Reviews and Meta-Analyses – Saline Injection Not Specified

 PubMed: PM25576642

Non-Randomized Studies – Alternative Intervention

 PubMed: PM24809367

Clinical Practice Guidelines – Methodology Not Specified

Saline Not Specified

 PubMed: PM26087225

Review Articles

 PubMed: PM27008292

 PubMed: PM26118521

 PubMed: PM23579112
Additional References
