Cost Analysis of Intermittent Theta Burst Stimulation (iTBS) Versus 10Hz Repetitive Transcranial Magnetic Stimulation (rTMS) in Patients With Treatment Resistant Depression

ANDREW B. MENDLOWITZ MBIOTECH, ALAA SHANBOUR MD, JONATHAN DOWNAR MD, FIDEL VILA-RODRIGUEZ MD, ZAFIRIS J. DASKALAKIS MD, WANRUDEE ISARANUWATCHAI* PHD, DANIEL M. BLUMBERGER* MD

PRESENTER: ANDREW MENDLOWITZ

APRIL 15, 2019

DISCLOSURE

I have no actual or potential conflict of interest in relation to this topic or presentation.

OUTLINE

- 1. Background
- 2. Methods
- 3. Results
- 4. Discussion
- 5. Summary

OUTLINE

- 1. Background
- 2. Methods
- 3. Results
- 4. Discussion
- 5. Summary

TREATMENT-RESISTANT DEPRESSION

- Major depressive disorder (MDD) accounts for 4.3% of the global burden of disease¹
 - Leading cause of disability worldwide²

In Canada:

4.7% of Canadians reported a major depressive episode in the last year³

Of patients with MDD:

- In the STAR*D trial of pharmacotherapy of MDD, the prevalence of treatmentresistant depression (TRD) was 30%⁴
- TRD among MDD patients has been estimated to be as high as 30% to 60% in the literature⁵
- Estimated prevalence of 2% in population⁶

^{3.} Statistics Canada. Mental health profile, Canadian Community Health Survey - mental health (CCHS), by age group and sex, Canada and provinces [Internet]. Ottawa, ON: Government of Canada; 2013 4. Rush AJ, Trivedi MH, Wisniewski SR, et al. Acute and Longer-Term Outcomes in Depressed Outpatients Requiring One or Several Treatment Steps: A STAR*D Report. AJP 2006;163(11):1905–17.

TREATMENT-RESISTANT DEPRESSION

Major depressive disorder (MDD)

Failure of at least two medication trials

Treatment-resistant depression (TRD)

TREATMENT-RESISTANT DEPRESSION

TREATMENT-RESISTANT DEPRESSION

Major depressive disorder (MDD)

Failure of at least two medication trials

Treatment-resistant depression (TRD)

Electroconvulsive therapy (ECT)

- Mainstay therapy for TRD¹
- Adverse effects¹
- High cost and logistical demands^{2,3}

Repetitive transcranial magnetic stimulation (rTMS)

^{1.} Lisanby SH. Electroconvulsive Therapy for Depression. N Engl J Med 2007;357(19):1939–45.

^{2.} Downar J, Blumberger DM, Daskalakis ZJ. Repetitive transcranial magnetic stimulation: an emerging treatment for medication-resistant depression. Canadian Medical Association Journal 2016;188(16):1175–7.

3. Getty SS, Faziola LR. Adverse effects of electroconvulsive therapy on cognitive performance. Ment Illn 2017;9(2).

TREATMENT-RESISTANT DEPRESSION

Major depressive disorder (MDD) Failure of at least two medication trials Treatment-resistant depression (TRD) Repetitive transcranial magnetic Electroconvulsive therapy (ECT) stimulation (rTMS) Introduced in 1985¹ Focused magnetic field pulses Research has confirmed its efficacy and safety in TRD²

^{1.} George MS, Wassermann EM, Williams WA, et al. Daily repetitive transcranial magnetic stimulation (rTMS) improves mood in depression. Neuroreport: An International Journal for the Rapid Communication of Research in Neuroscience 1995.

rTMS vs. ECT

- Have been extensively compared!
- Slightly different in clinical effect
- rTMS has a much better adverse-effect profile and cost-effective when compared to ECT in TRD^{1,2}

^{1.} Kozel FA, George MS, Simpson KN. Decision analysis of the cost-effectiveness of repetitive transcranial magnetic stimulation versus electroconvulsive therapy for treatment of nonpsychotic severe depression. CNS spectrums. 2004 Jun;9(6):476-82.

^{2.} McClintock SM, Reti IM, Carpenter LL, et al. Consensus recommendations for the clinical application of repetitive transcranial magnetic stimulation (rTMS) in the treatment of depression. The Journal of clinical psychiatry 2018;79(1).

rTMS Protocols

THE THREE-D TRIAL

 Recently, the THREE-D trial was published as the first randomized non-inferiority trial¹ comparing:

1) Conventional 10 Hz rTMS protocol:

- Approved by the FDA in 2008^{2,3}
- $\circ~$ 3,000 pulses of 10Hz stimulation to the left DLPFC over 37.5 min 1

2) Intermittent theta-burst stimulation (iTBS) protocol:

- Differed only in stimulation pattern and number of pulses for a 3 min session duration¹
- Approved by the FDA for TRD in August of 2018⁴
- Non-inferior in reducing depression scores on both the Hamilton Rating Scale for Depression (HRSD-17) and the self-report Quick Inventory of Depressive Symptoms

RESEARCH GAP

- Given the evidence from the THREE-D trial that iTBS is non-inferior to 10Hz rTMS:
 - Research is needed to further optimize and inform decisions regarding the efficacy and cost-effectiveness of rTMS compared to other available treatment strategies in MDD
 - There is still a gap in research describing the potential economic impact of implementing iTBS in clinical practice

RESEARCH GAP

- Given the evidence from the THREE-D trial that iTBS is non-inferior to 10Hz rTMS:
 - Research is needed to further optimize and inform decisions regarding the efficacy and cost-effectiveness of rTMS compared to other available treatment strategies in MDD.
 - There is still a gap in research describing the potential economic impact of implementing iTBS in clinical practice

The question still remains:

What is the cost per course and cost per remission for implementing iTBS versus the conventional 10Hz rTMS protocol to treat patients with TRD?

OUTLINE

- 1. Background
- 2. Methods
- 3. Results
- 4. Discussion
- 5. Summary

METHODS STUDY OVERVIEW

Design Patient-level cost analysis • Adults aged 18 to 65 with a diagnosis of MDD who did not Population respond to adequate pharmacotherapy Intervention Minimum of 4-weeks of iTBS treatment Comparator • Minimum of 4-weeks of 10Hz rTMS treatment Perspective Healthcare system • Duration of the course of treatment per patient following Time Horizon initial assessment • Per patient cost per course of treatment Outcomes (2018 USD) • Per patient cost per remission

		10Hz rTMS		iTBS		
Parameter	Unit	Base Case	Range	Base Case	Range	Source
Length of Session	Minutes per session	45	(30 – 60)	15	(10 – 30)	Expert opinion
Equipment capacity	Sessions per day	7	(6 – 8)	20	(15 – 30)	Expert opinion
Remission rate (%)	Rate of remission	30	(20 – 40)	30	(20 – 40)	THREE-D trial ¹
Core equipment amortization	Annual period	5	(3 – 10)	5	(3 – 10)	Expert opinion
Coil amortization	Annual period	1	(1 – 5)	5	(1 – 5)	Expert opinion

^{1.} Blumberger DM, Vila-Rodriguez F, Thorpe KE, et al. Effectiveness of theta burst versus high-frequency repetitive transcranial magnetic stimulation in patients with depression (THREE-D): a randomised non-inferiority trial. The Lancet 2018;391(10131):1683–92.

		10Hz rTMS		iTBS		
Parameter	Unit	Base Case	Range	Base Case	Range	Source
Length of Session	Minutes per session	45	(30 – 60)	15	(10 – 30)	Expert opinion
Equipment capacity	Sessions per day	7	(6 – 8)	20	(15 – 30)	Expert opinion
Remission rate (%)	Rate of remission	30	(20 – 40)	30	(20 – 40)	THREE-D trial ¹
Core equipment amortization	Annual period	5	(3 – 10)	5	(3 – 10)	Expert opinion
Coil amortization	Annual period	1	(1 – 5)	5	(1 – 5)	Expert opinion

^{1.} Blumberger DM, Vila-Rodriguez F, Thorpe KE, et al. Effectiveness of theta burst versus high-frequency repetitive transcranial magnetic stimulation in patients with depression (THREE-D): a randomised non-inferiority trial. The Lancet 2018;391(10131):1683–92.

		10Hz	10Hz rTMS		ГВЅ	
Parameter	Unit	Base Case	Range	Base Case	Range	Source
Length of Session	Minutes per session	45	(30 – 60)	15	(10 – 30)	Expert opinion
Equipment capacity	Sessions per day	7	(6 – 8)	20	(15 – 30)	Expert opinion
Remission rate (%)	Rate of remission	30	(20 – 40)	30	(20 – 40)	THREE-D trial ¹
Core equipment amortization	Annual period	5	(3 – 10)	5	(3 – 10)	Expert opinion
Coil amortization	Annual period	1	(1 – 5)	5	(1 – 5)	Expert opinion

^{1.} Blumberger DM, Vila-Rodriguez F, Thorpe KE, et al. Effectiveness of theta burst versus high-frequency repetitive transcranial magnetic stimulation in patients with depression (THREE-D): a randomised non-inferiority trial. The Lancet 2018;391(10131):1683–92.

		10Hz rTMS		iTBS		
Parameter	Unit	Base Case	Range	Base Case	Range	Source
Length of Session	Minutes per session	45	(30 – 60)	15	(10 - 30)	Expert opinion
Equipment capacity	Sessions per day	7	(6 – 8)	20	(15 – 30)	Expert opinion
Remission rate (%)	Rate of remission	30	(20 – 40)	30	(20 – 40)	THREE-D trial ¹
Core equipment amortization	Annual period	5	(3 – 10)	5	(3 – 10)	Expert opinion
Coil amortization	Annual period	1	(1 – 5)	5	(1 – 5)	Expert opinion

^{1.} Blumberger DM, Vila-Rodriguez F, Thorpe KE, et al. Effectiveness of theta burst versus high-frequency repetitive transcranial magnetic stimulation in patients with depression (THREE-D): a randomised non-inferiority trial. The Lancet 2018;391(10131):1683–92.

COST PARAMETERS (in 2018 USD)

		1	.0Hz rTMS	iTBS		
Parameter	Unit	Base Case	Range	Base Case	Range	Source
Core Equipment	Equipment package cost	50,000	(37,500 – 62,500)	73,000	(54,750 – 91,250)	Manufacturer suggested
Maintenance	Annual cost	2,500	(1,875 – 3,125)	2,500	(1,875 – 3,125)	Expert opinion
Coil	Cost of coil	19,000	(14,250 – 23,750)	19,000	(14,250 – 23,750)	Manufacturer Suggested
Technician Services	Hourly wage	30	(20 – 40)	30	(20 – 40)	Expert opinion
Initial Assessment	Cost per assessment	160	(100 – 500)	160	(100 – 500)	Medicare and Medicaid ¹
Ongoing assessments	Cost per assessment	120	(100 – 300)	120	(100 – 300)	Medicare and Medicaid ¹

ANALYSIS

Costs were broken down per session then multiplied by each THREE-D patient's number of treatment sessions:

- 1) Cost of technician = $C_{Technician\ wage}$ * Session Duration * $N_{Tx\ sessions}$
- 2) Cost of equipment = $(\frac{\frac{C_{annual cost}}{Weekdays per year}}{Equipment Capacity}) * N_{Tx sessions}$
- 3) Cost of physician assessments = $C_{initial\ appointment} + C_{ongoing\ appointments} * N_{weeks\ of\ TX}$
- 4) Cost of treatment course = $C_{physician\ assessments} + C_{Technician} + C_{core\ equipment} + C_{coil}$
- 5) Cost per remission = $\frac{C_{Course\ of\ tX}}{Remission\ rate}$

ANALYSIS

Incremental cost of treatment and cost of remission:

- Non-parameter bootstrapping to generate bias-corrected uncertainty intervals around incremental costs
- Deterministic sensitivity analyses to determine the effect of parameter uncertainty on study results

OUTLINE

- 1. Background
- 2. Methods
- 3. Results
- 4. Discussion
- 5. Summary

THREE-D TRIAL RESULTS

Parameter	10Hz rTMS (n=192)	iTBS (n=193)	P Value
Age, Mean (SD)	43.4 (12.1)	41.8 (10.7)	0.1645
Episode length, Mean (SD)	23.8 (28.7)	21.8 (24.6)	0.4910
Men, N (%)	81 (42.2%)	74 (39.4%)	0.442
Previous ECT, N (%)	4 (2.1%)	15 (7.8%)	0.010
Receiving psychotherapy, N (%)	73 (38.0%)	80 (41.5%)	0.492
Any anxiety diagnosis, N (%)	113 (58.9%)	100 (51.8%)	0.165
Treatment sessions, Mean (SD)	26.4 (4.8)	26.7 (4.7)	0.5427
Missed treatment sessions, Mean (SD)	0.094 (0.5)	0.13 (0.8)	0.5920
Interrupted sessions, Mean (SD)	0.12 (0.4)	0.063 (0.3)	0.0744
Rescheduled sessions, Mean (SD)	3.04 (3.8)	2.24 (3.7)	0.0355

AVERAGE PER PATIENT COSTS

	10Hz r	ΓMS	iTBS		
Parameter	Mean (USD), SD	Mean(CAD), SD	Mean (USD), SD	Mean(CAD), SD	
Total cost of course of treatment	\$1,844 (304)	\$2,309(381)	\$1,108 (166)	\$1,387(208)	
Total cost of remission	\$6,146 (1,015)	\$7,695(1271)	\$3,695 (552)	\$4,626(691)	

COURSE OF TREATMENT COST PER PATIENT

	10Hz r	TMS	iTBS		
Parameter	Mean (USD), SD	Mean(CAD), SD	Mean (USD), SD	Mean(CAD), SD	
Total cost of course of treatment	\$1,844 (304)	\$2,309 (381)	\$1,108 (166)	\$1,387(208)	
Total cost of remission	\$6,146 (1,015)	\$7,695 (1271)	\$3,695 (552)	\$4,626(691)	

• iTBS yielded a savings of US\$735 (CAN\$920.22) per course compared to 10Hz rTMS

COST OF REMISSION PER PATIENT

	10Hz r	ΓMS	iTBS		
Parameter	Mean (USD), SD	Mean(CAD), SD	Mean (USD), SD	Mean(CAD), SD	
Total cost of course of treatment	\$1,844 (304)	\$2,309(381)	\$1,108 (166)	\$1,387(208)	
Total cost of remission	\$6,146 (1,015)	\$7,695(1271)	\$3,695 (552)	\$4,626(691)	

• iTBS yielded a savings of US\$2,451 (CAN\$3,069) per remission compared to 10Hz rTMS

AVERAGE PER PATIENT COSTS BY CATEGORY

COST-SAVINGS IN CONTEXT

- Although these results demonstrate significant cost-savings, context is important!
- To accomplish these cost-savings:
 - For iTBS, assuming a single patient per session this translates to ~5,220 patients per year needed per one device (coil and core equipment)
 - Translates to 104,400 sessions per year (assuming minimum of 4-weeks of treatment)
 - For 10Hz rTMS, translates to ~1,827 patients per year needed per one device
 - Translates to 7,308 sessions per year (assuming a minimum of 4-weeks of treatment)
- Also assumes capacity is constant and not changing

OUTLINE

- 1. Background
- 2. Methods
- 3. Results
- 4. Discussion
- 5. Summary

DISCUSSION

COVERAGE

Varied coverage criteria between countries:

- In the US, rTMS is covered by federal and commercial healthcare insurers for the treatment of patients with MDD who have not achieved remission with conventional pharmacotherapy¹
- United Kingdom's National Institute for Health and Care Excellence (NICE) has recommended rTMS for treatment of medication-resistant depression²

In Canada:

• Treatment is currently funded under the provincial health insurance plans only in Quebec and Saskatchewan³

DISCUSSION

SESSION COSTS

Compared to ECT:

ECT is associated with a cost ranging from \$300 to \$1,000 per treatment session¹

In the US:

- Costs ranging from \$6,000 to \$12,000 for an acute course of 20 to 30 rTMS sessions²
- Reimbursement falls in the range of \$120 to \$250 per session among public and private coverage plans

In Canada:

\$60 to \$200 per session where publicly or privately funded rTMS is available

In Europe:

• In private clinics or large centres costs can fall in the range of \$60 to \$300 or higher per session

1. Ross EL, Zivin K, Maixner DF. Cost-effectiveness of electroconvulsive therapy vs pharmacotherapy/psychotherapy for treatment-resistant depression in the united states. JAMA Psychiatry 2018;75(7):713–22.

2. Health Quality Ontario. Repetitive transcranial magnetic stimulation for treatment-resistant depression: an economic analysis. Ont Health Technol Assess Ser. 2016 March;16(6):1-51.

DISCUSSION

STRENGTHS AND LIMITATIONS

Strengths:

- Usage of THREE-D data, one of the first comparisons between rTMS protocols
 - Designed to be generalizable to real-world clinical practice

Limitations:

- Range of possible estimates for parameters associated with equipment lifespan and equipment capacity
- Results are context specific!
- Does not consider follow-up maintenance treatments¹
- Only considered direct costs associated with treatment
- Does not consider accelerated courses of treatment²

OUTLINE

- 1. Background
- 2. Methods
- 3. Results
- 4. Discussion
- 5. Summary

SUMMARY

- This study demonstrates the potential economic impact of implementation of iTBS in treatment of patients with TRD when compared to 10Hz rTMS
- Impact of a shorter session duration on technician time and treatment capacity has the potential to result in significant costsavings per patient and per remission
- In the context proposed (per one device and if the suggested treatment capacity is met), iTBS may be an economically viable intervention for achieving meaningful reductions in the system-wide prevalence and burden of disease for MDD

ACKNOWLEDGEMENTS

The authors thank the clinical research staff and patient participants of the THREE-D study and the local Data and Safety Monitoring Board Members.

St. Michael's Inspired Care. Inspiring Science.

Thank You!

SUPPLEMENTARY

AVERAGE PER PATIENT COSTS BY CATEGORY

	10H	z rTMS			
Parameter	Mean (SD)	Median (IQR)	Mean (SD)	Median (IQR)	P Value
Cost of technician time	594 (107)	675 (450 – 675)	200 (35)	225 (150 - 225)	<0.0001
Cost of core equipment	145 (26)	164 (109 – 164)	75 (13)	84 (56 – 84)	<0.0001
Cost of coil	275 (50)	312 (208 – 312)	19 (3)	22 (15 – 22)	<0.0001
Cost of maintenance	36 (7)	41 (27 – 41)	13 (2)	14 (10 - 14)	<0.0001
Cost of physician assessments	794 (115)	880 (640 – 880)	801 (112)	880 (640 – 880)	0.5189

RESULTS INCREMENTAL COSTS

	Incremental Cost (iTBS – 10Hz rTMS)				
Parameter	Mean (SD)	95% Confidence Interval			
Cost of treatment	-735 (24)	-783 — -688			
Cost of remission	-2,451 (81)	-2,610 — -2,293			

DETERMINISTIC SENSITIVITY ANALYSES

ASSUMPTIONS AND CONTEXT

Significant assumptions drive the estimates of cost per course of treatment and per remission for this study:

- 1) Constant treatment capacity
- 2) Each patient undergoes a single treatment session per workday
- 3) Implementation translates to one core equipment package and coil
- 4) Maintenance is only required annually
- 5) Technician setup time is 15 minutes