Estimating the Cost-Effectiveness Threshold for Cancer Care in Alberta:

Eldon Spackman, PhD

Assistant Professor

UNIVERSITY OF CALGARY CUMMING SCHOOL OF MEDICINE Department of Community Health Sciences

Contributors

- Mike Paulden, PhD: University of Alberta
- Chris McCabe, PhD: University of Alberta
- Petros Pechlivanoglou, PhD: The Hospital for Sick Kids
- Stafford Dean, PhD: Alberta Health Services
- Anthony Fields, MD: Health Quality Council of Alberta
- Vishva Danthurebandara, PhD: NS Ministry of Health
- Funded by CIHR Project Grant: Health Services and Health Economics Research for Cancer Control

What is the threshold?

- The 'threshold' is used in economic evaluations to determine if a health technology is 'cost-effective'
- Two ways to use the threshold:
 - 1. Compare the technology to the threshold
 - Cost-effective if ICER lies *below* the threshold: $\Delta C / \Delta E < \lambda$
 - Cost-effective if net health benefit (NHB) is *positive*: $\Delta E - \Delta C / \lambda > 0$
 - Cost-effective if net monetary benefit (NMB) is *positive*: $\Delta E \cdot \lambda - \Delta C < 0$
 - 2. Use threshold to estimate value based price

Why a Threshold?

- Threshold critical to assess cost-effectiveness
 - Constraints on growth in health expenditure
- Advantages of explicit basis for threshold
 - Transparent and accountable
 - Appropriate signals of value for investments to meet future health needs

How a Threshold?

- 1. Infer a threshold from past decisions
- 2. Estimate value of what gets displaced
- 3. Estimate the relationship between changes in expenditure and outcomes
 - Martin et al. and Claxton et al.

Data for all individuals with a cancer ICD since 2005

- Available data during the follow-up period (8 years from 2005 – 2013) for 283,239 individuals.
- Dataset contains variables for event status (dead or censored), time-to-event, demographics, costs and 1982 ICD variables.
- Costs include, emergency department, inpatient, specialist, general practice and urgent care center costs.

The Model

- Dependent variable
 - Time to Death
- Explanatory variable
 - Average annual cost since diagnosis
- Control variables
 - Age
 - Sex
 - Total number of ICDs
 - Number of distinct ICDs
 - Low survival
 - Material deprivation quintile
 - Social deprivation quintile
 - 1982 ICDs

- Accelerated failure time (AFT) models
- Three distributional assumptions
 - Weibull
 - Log-Logistic
 - Logistic
- Models trained for randomly selected patients and validated for another randomly selected set
- Model Diagnostics
 - BIC, RMSE and ROC

Predicting HRQoL

- Use an algorithm that predicts UK EQ-5D from ICD9
 - Sullivan et al. 2011
 - Convert ICD9 to ICD10
 - For unavailable variables
 - Assume national averages: race, income, education level
 - Disregard: non-cancer diagnoses
 - Predict HRQoL per patient
- Average HRQoL = 0.654
- Claxton et al = 0.66 + 3% improvement

Population Characteristics

	One cancer ICD				Two cancer ICDs in Year			
	Training Set		Validation Set		aining Set	Validation Set		
Sample Size		150,000	133,239		44,797	22,399		
Proportion Male		50.5%	50.3%		48.5%	48.0%		
Average Age		57.7	57.7		59.1	59.0		
Average Year of Diagnosis		2007.8	2007.8		2009.5	2009.5		
Average total costs		\$36,094	\$35,807		\$47,115	\$46,972	Τ	
Average annual costs		\$12,395	\$12,238		\$17,852	\$17,945		
Died		35.0%	35.0%		54.8%	54.9%		

Model Selection

	Weibull	Log-logistic	C Logistic
BIC	84568	84483	84857
AUC	0.8602	0.8682	0.8677
RMSE	1.8583	1.5491	1.4316

Regression Results

	1 ICD		2 ICDs	
Parameter	Value	SE	Value	SE
Intercept	13.3847	0.1330	13.0053	0.0998
Sex	-0.1469	0.0248	-0.1105	0.0239
Age	-0.0440	0.0009	-0.0339	0.0009
Total ICD	-0.0848	0.0012	-0.0654	0.0011
Distinct ICD	0.0312	0.0023	0.0284	0.0022
Low Survival	1.0122	0.0302	1.0095	0.0295
Avg. Cost	0.1198	0.0118	0.0299	0.0180
MDQ	-0.0004	0.0071	0.0150	0.0070
SDQ	0.0040	0.0074	-0.0092	0.0073

Draft ICER Results

1 Cancer ICD

Model	LE	Avg Cost	Elasticity	ICER /LYG	Utility	+ 3%	ICER /QALY
Logistic	12.1	\$12,395	0.00119	\$8,611	0.654	0.674	\$12,775

2 Cancer ICDs in a Year

Model	LE	Avg Cost	Elasticity	ICER /LYG	Utility	+ 3%	ICER <u>/QALY</u>
Logistic	12.5	\$ 17,852	0.000297	\$48,231	0.654	0.674	\$71,552

Conclusions

- Routinely collected administrative data allows us to estimate marginal productivity by ICD chapter
- Including ICDs seems to control sufficiently to avoid endogeneity
- Marginal productivity differs by population